# Geophysical Evaluation of Dam Seepage to Support Rehabilitation Efforts





AEG2020 Virtual Conference September 18, 2020

John A. Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G., Forrest Kunkel, G.I.T.

Mundell & Associates, Inc.

Consulting Professionals for the Earth and the Environment

# Presentation Outline



- Dam and Lake History
- Geophysical Survey Methods
- Chacterization Results
- Rehabilitation Efforts
- Lessons Learned







# Dam Erosion and Seepage





















### SP Response from Flows into and out of Dams





#### 2D-ERI Survey

- Data collected with an AGI SuperSting R8 earth resistivity meter
- Dipole-dipole array of 56
  electrodes at a spacing of 3 ft
  along one long profile line of
  about 1100 ft in length along
  the crest of the dam.
- Data downloaded and inversemodeled using the software Advanced EarthImager2D





#### 2D-ERI Survey

- Data collected with an AGI SuperSting R8 earth resistivity meter
- Dipole-dipole array of 56
  electrodes at a spacing of 3 ft
  along one long profile line of
  about 1100 ft in length along
  the crest of the dam.
- Data downloaded and inversemodeled using the software Advanced EarthImager2D









#### **GPR Survey**

GSSI SIR4000 System with a shielded 400-megahertz (MHz) antenna; processed with RAdar Data Analyzer (RADAN) Version 7.4











Table 1. Summary of Potential Seepage Areas from Geophysical Data Evaluation

| Distance Along<br>Profile Line, ft | FDEM | 2D-ERI<br>Soils | 2D-ERI<br>Bedrock | SP | GPR |
|------------------------------------|------|-----------------|-------------------|----|-----|
| 30 to 60                           | X    | X               | -                 | -  | X   |
| 60 to 90                           | X    | X               | -                 | X  | -   |
| 90 to 100                          | X    | -               | -                 | -  | X   |
| 100 to 110                         | -    | X               | X                 | X  | -   |
| 120 to 130                         | -    | -               | -                 | -  | X   |
| 145 to 160                         | -    | X               | -                 | X  | -   |
| 220 to 240                         | X    | X               | -                 | -  | X   |
| 235 to 270                         | -    | X               | X                 | X  | -   |
| 330 to 350                         | -    | -               | -                 | -  | X   |
| 350 to 390                         | X    | X               | X                 | X  | X   |
| 400 to 410                         | -    | X               | X                 | -  | X   |
| 445 to 535                         | X    | X               | Xa                | X  | X   |
| 540 to 560                         | -    | -               | -                 | -  | X   |
| 585 to 610                         | _    | -               | Xa                | X  | -   |
| 610 to 630                         | -    | -               | -                 | -  | X   |
| 640 to 660                         | -    | -               | -                 | -  | X   |
| 670 to 690                         | -    | -               | Xa                | X  | -   |
| 715 to 740                         | -    | -               | -                 | X  | X   |
| 810 to 820                         | -    | -               | -                 | -  | X   |
| 880 to 890                         | -    | -               | -                 | -  | X   |
| 910                                | X    | -               | -                 | -  | X   |
| 930 to 1050                        | X    | -               | -                 | -  | X   |

<sup>&</sup>lt;sup>a</sup>Observed either as low resistivity weathered bedrock zones or greater depth to bedrock.

## Dam Remediation Alternatives



- Embankment soils seepage
- Foundation bedrock seepage
- Shallow seepage zone removal versus additional grouting
- Removal of upper soils/historic roadway and replace soil/increase crest and flatten dam slope.





# Conclusions





- Geophysical profiles were able to map an undulating variablyweathered bedrock surface beneath fine-grained clayey dam embankment materials
- Properties of decreased resistivity present within dam embankment soils, could indicate increased soil moisture contents and seepage zones.



# Conclusions



- Areas of anomalous Spontaneous Potential (SP) readings correlate well with several areas of lower resistivity within the soil and bedrock, providing another line of evidence for increased seepage.
- Some evidence that the 3 former grout areas remain locations of increased seepage.



# Conclusions



- Some evidence of remaining seepage to the northwest and southeast of the water intake structure where erosion washout is currently observed.
- Geophysical surveys led to understanding of potential seepage pathways and selection of remedial alternative.

