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Introduction

In the last several decades, the use of geophysical
exploration methods with regard to helping solve geotechnical
engineering problems has greatly increased as field methods
have become better established and methods of analysis and
interpretation have grown in sophistication and accuracy.
Because of the increasing costs in site investigations and
preliminary studies, the drilling of bore holes for sampling
purposes is being challenged by many other potentially feasible
methods of site characterization, one of which is geophysical
exploration,

Soil profiles are often erratic and soll properties
highly variable, In the past the geotechnical engineer has
had to rely on a few select test results that would be used
to establish the "soll properties” of the site, These tests
were run on only a few small samples taken from isolated
locations at selected points in time,

With the increased usage of probabilistic methods in
soils engineering, .as well as geophysical methods which have
the capability of characterizing large volumes of the soil
mass at a site,instead of small selected volumes, the
possibility ‘arises in somehow combining these two areas for
the purpose of providing the engineer with insights into
the variabilifj of not only the solil stratigraphy and
inhomogeneities, but also the distribution of actual soil

parameters in the area of interest. With these insights, the



engineer may then be able, using sound reasoning and good
Judgement, to predict the soil performance as well as a given
structure's performance,

Because of the multitude of geophysical methods now in
use and in the process of further development (the Army Corp
of Engineers lists 41), it would be a difficult task to
discuss in detail each and every method and its possible
application to geotechnical engineering, Therefore, the
area of seismic exploration methods including refraction,
uphole/downhole, and crosshole surveying will be discussed
in detail, These methods are both well developed and
potentially adaptable to the probabilistic approaches
warranted in certain types of geotechnical problems,

This paper will be divided into three general areas:
seimic methods of surface and subsurface exploration including
.the refraction, uphole/downhole, and crpsshole methods; some
direct applications of these methods to specific engineering |
problems; a probabilistic approach using the results of
these methods to determine distributions of specific soil
parameters to be used in analysis and design.

It is felt that concentration on the three specific
seismic methods and their present applications, as well as
the developﬁent of a procedure of combining these methods
with  probabilistic ideas, will provide the basis for further
insights into the many possible ways that pfobability and

geophysical exploration may be used together in the future to



enhance our understanding of site variability., With the
continued increase in the use of computers, the potential

for further development in this same area cannot be 6verlooked.
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Seismic Exploration: A Brief Ové}view

In seismic methods, an elastic pulse or disturbance is
created on or below the ground surface, and the resulting
motion of the ground at other locations is recorded by small
seismometers or "geophones", Meésurements of the time
interval befween the generation of the pulse and its detection
at the various geophone locations is an indication of the
velocity that the impulse wave propagates through the soil
or rock medium, |

Since seismic theory is based on the fact that the elastic
properties of the subsurface profile directly influence the
velocity of propagation, as soils and rock change laterally
and with depth, so too should the velocity of propagation,
as recorded on different arrangements of geophones, Therefore,
any subsurface variability, i1f distinct enough, should bhe
able to be located and accessed by noting the velocity
changes observed in the seismic record.

In the three seismic methods to be discussed, all are
based on the *signal source ~ medium of wave propagation =~
signal receiver - travel time'recorder" concept. Each one
approaches the concept with a unique method by which to achleve
the desired results. These results are then used to describe
some aspect of the subsurface: geometry, lithology, property
characteristics, However, before these methods are discussed,

it is important to gain a basic understanding of a few of the



fundamental ideas that will be used in the coming pages.

Wave Types

Several types of waves may be propagated through an
elastic medium, three of which are of interest in our discussion
of the seismic methods., One type is the compressional, or P-
wave, in which particle motion is parallel to the direction
of wave propagation, The P-wave has a greater velocity than
the other type of waves and, therefore, is the first to arrive
at the geophone detectors,., Another wave type is the shear or
Smwavé, in which particle motion is normal to the direction
of wave travel., This wave arrives later at the geophone and
its arrival time is often more difficult to interpret than
the P-wave, The third wave type that seismic methods may
be concerned with is the surface wave (Rayleigh type} in
which particle motion is elliptical, involving both shear
and compressional movement, Its velocity is only slightly
smaller than the S-wave and often interfers with the S~wave's
detection on a §eismic record, These three wave types are

11-4
illustrated in figure 2.

Signal Receivers:: Geophones

The geophones most often used’in selsmic surveys for
engineering purposes respond to detected impulses 5y giving
an electrical output which is proportional to the vertical
or horizontal component of the ground velocity felt at their

locations. A common directional type, shown in figure 3, has
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a body which is a permanent magnet., In the radial magnetic

field of the gap is a coil on a spring mounting which permits

it to move vertically. Any ground motion will cause the

coil to move in the field and an electromotive force proportional

to the velocity of motion will be induced in the coil,

Magne!

(Griffiths and
King, 1965)

Fic. 3 Simplified sectional view of a typical moving-coil geoplone.

Depending on the type of wave to be recorded, the
directional geophone must be oriented in such a way as to be
able to measure the appropriate vertical or horizontal
movements caused by the type of wave measured, This will
be seen clearly in the geophone orientations used in the

seismic methods to be discussed,

Refraction Seismic Survey

The purpose of the refraction survey 1s to produce a
travel time ~ impact distance graph from the recording of
arrival times of the first waves detected at geophones -
placed a given distance along a line from the wave creation

source, A simplified set up of the survey is shown in



figure 4,
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(prepared by WES)

A hammer blow or small explosive charge is used to
induce an elastic wave into the ground, The travel timé is
the time interval from when the wave is first initiated to
the time it is recorded as a disturbance on receiver geophones
placed at varying distances from the source. If the travel
path of the wave encounters significantly higher velocity
layers at different depths, they will produce changes in
slopes of the travel-time~impact distance graph that may be
interpretted to give the thicknesses and P-wave velocities
of the seil,rock layers, Figure 5 shows a typical graph for
a multiple layer case,

Problems arise in complex geological subsurface conditions
when the time~distance graph is not easily interpretted. The
refraction method is not able to determine the existence of
low-velocity layers below higher velocity layers, and a

*blind zone® or undetected thin layer of stratum is also a
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common characterisic that the refraction method does not
pick up. These complications may give rise to inaccuracies
in soil and rock layer thicknesses but, in general, do not
affect the P-wave veloclties of the different layers

calculated from the inverse slopes of the graph,

Subsurface Surveys: Uphole/Downhole/Crosshole Methods

These surveys are made by drilling bore holes and then
placing either a seismic energy source or an energy source
detector into the hole and measuring the time needed for a
geismic wave to travel from source to receiver along a
minimum path, Both P-wave and S-wave velocities may be
~determined through various soil and rock layers at different
depths using propagation time and ray path distance-traveled
information,

The uphole and downhole methods are illustrated in figures
6,7, and 8, In the uphole technique, a seismic wave 1is
initiated at the bottom of the hole by some source and the
resulting surface disturbance is recorded by geophones located
near the mouth of the borehole (usually within 10'). The
seismic source is then moved up the hole at specified intervals
and the process is repeated until travel times versggdepth
information has been gathered for the entire borehole,

There are itwo procedures used in the downhole method,
one for obtaining P-wave data, and one for obtaining S-wave
data, In both, the seismic recorder is located at a

specified depth in the borehole and it records the type of
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wave propagated as well as the time of wave detection,
The recorder may be a hydrophone, in which case the drill
hole is filled with fluid. The hydrobhone records movements
in all directions and can thus be used for both P-wave and
S=wave detection., The recorder may also be a vertical
geophone attached to the side of the bore hole which measures
P-wave arrivals, or 2 triaxial geophone array, which records
both P-wave and S-wave arrivals,

If S~wave velocitles are desired in a downhole survey,
a seismic source consisting of a hammer impacting on the
end of a large wooden plank 1s used. The plank is weighted
down so as to provide good contact with the ground surface,
In order to identify the S-wave arrival times, the plank is
struck on one end, then on the other to provide a 180 phase
reversal of the initial shear wave signal. As shown in

figure 9)the shear wave arrival may then be able to be more’

accurately identified,

—
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Crosshole surveys require the need of at least two borings
for locations of the seismic source and the receiver set up,
As illustrated in figure 10, source and receiver are placed
at the same elevation in two bore holes and P=wave and S-
wave travel times are measured from the time of the signal
initiation to the time of the signal detection by the
horizontal and vertical geophones in the other borehole,
This-is generally done for 5' to 10° intervals in the
borehole,

Computer programs, based on Snell's Law of refraction,
‘are used to determine true velocities, They account for
zones of high velocity contrasits through which waves may
have been refracted to itravel to the source in a shorter
time. Reliable P~wave velocities may be obtained with
calculated values within 5 to 10 per cent of true values,
S~wave velocity values are not as easily interpretted because
of source problems and difficulty in determining the S-wave
arrival times., These velocity values are in the range of
10 to 15 per cent off true v.alues.m

The crosshole method gives horizontal P and S-wave
velocities as compared to the vertical ?elocities measured
by the uphole and downhole techniques. Variability in the
resulting velocities many times is due to vertical and
lateral inhomogeneities as well as soil profile anisotrophy.
Instead of accounting for this observed variability in the

velocities, most often mean values are used in characterizing
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the layers. The probabilistic method to be presented will
allow for these variations in values and incorporate them

into the design process.

Applications of the Seismic Methods

In general, the refraction, uphole/downhole, and
crosshole survey methods Previously discussed have been
used, to some degree and in combinztion with other exploration

methods, to aid in or accomplish the following:

1. Location, mapping, and correlation of geological
features such as stratigraphy, lithology, and their complex-
ities: =so0il and rock thicknesses and orientations, depth to
groundwater, etc,

2, Detection and delineation of buried localized zones of
anomalous characteristics: cavities, sink holes, large
boulders, zones of weathering and weakness, inclusions of
poorly consolidated soils within competent materials,
collapsed mine drifts,g

3. Preliminary site investigations to provide a basis
for: plamming subseguent detailed seismic surveys in areas
of interest, and locating drill holes in representative
areas for the exploration phase of a project.

k. Rippability estimation for excavated material
classification: soils and rock with high P-wave velocities

are classified as nonrippable materials,
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5. Site liquefaction potential studies

6. Elastic settlement predictions using in situ dynamic
modull egtimated from Puwavg,_snwave, and density field
measﬁrements.

7. MNeasurement of in situ parameters, especially the
elastic moduli of seoils and rock, in cases where the soile-
structure interactlion is a dominant factor in the response
of the structure to dynamic loading conditions. Examples
are: problems of blast loading conditions; wave loading of
offshore structures; concrete and earthen dams subject to
earthquake loadings: vibratory loading conditions on
foundations induced by machinery; foundations for reactor
containment vessels, antennas, and other displacement or
acceleration sensitive equipment where in situ elastic moduli

10
are sometimes required for design or safety analyses,

It is this last application,. that of obtaining a
measurement of in situ soil parameters, specifically the
dynamic moduli, that will be concentrated on in the
probabilistic approach undertaken in the last section of
this paper. It is because of the increased acceptance of
in situ parameter estimations obtained by geophysical seismic
exploration used in the design and/or analysis of a specific
structure, that there is a need for the quantification of
the variability involved in the derived parameters, If soil

parameters obtained through seismic survey data are to be used
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in design and prediction of structural performance, then
the nature of the variability of those parameters must be
determined as well as the upper and lower bounds of the
parameter distribution. A more detailed discussion of this

is included in the last section,

Dynamic Analysis of Dams: A Case History of Houser Lake Dam, Montana

In order to make a case for the use of a probabilistic
approach to predict the variability of the dynamic soil moduli
obtained from seismic methods, an actual case history will be
discussed here in which the dynamic soil moduli determined
from crosshole surveys across an old concrete dam structure
were used to access the stability of the structure.

The problem of doing a dynamic analysis of the foundation
of Houser Lake Dam in Montana involved the use of selsmic
crosshole survey measurements taken along the crest and
on the downstream face of the dam. P-wave and 3S-wave velocities
were obtained and the elastic moduli computed by drilling
boreholes 60 to 80 feet threugh the concrete structure and

into the bedrock foundation., Seismic waves were then
propagated through the dam in the crosshole method previouly
QHQescribed.‘ o
| Qf iﬂterest was the detection of physical irregularities,
defects, and possible voids in the concrete that would affect

the elastic modull of the concrete., Defects in the concrete
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such as loose aggregate, no matrix, and the occurrance of
fracturing seemed to correlate well with zones of low P-wave
velocities, Physical defects ranging from 3 to 10 feet in
dimension were able to be detected. The elastic moduli in
different areas and depths of the dam computed from the
crosshole seismic survey velocity data were used 4o establish
the extent of the defects and, finally, determine the integrity
of the concrete dam structure and its foundation.

The use of the crosshole method in this case study to
lpredict the performance of the Houser ILake Dam by estimating
dynamic in situ elastic moduli points strongly to the potential
use of geophysical techniques as viable means of soil
parameter estimation, If combined with probabilistic concepts,
new and useful ways of gathering information about site
parametric vériability and predicting structural integrity
and performance may be developed to make gite investigation

+

and characteriztion both more reliable and more economical,

Combining Geophysical Exploration and Probabilistic Concepts

Because geophysical methods are able to "evaluate® large
volumes of soll and rock over vast areas economically and
efficiently, and, variations in the resulting measurements
due to soil propefty variations can be observed and quantified,
the application of probabilistic techniques to the information
gathered in 2 geophysical survey can provide insights that

may be incorporated with a great deal of confidence, into
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actual foundation design and evaluation procedures,

In this section, the variability of the in siu dynamic
moduli will be examined,. These moduli can be calculated
from relationships with known values of P-wave and S-wave

velocities and soil densities,

ElaséiclProperties of a Material

Thé theory of elasticity states that in the interior
of an elastic, isotropic, homogeneous body, two kinds of
seismic waves may be propagated, the P-wave and the S~wave,
The speed, or seismic velocity, of these waves depends a
great deal on the elastic properties of the material. To
describe the elasticity of a material completely, two of the

following elastic constants need to be specified:

1. Bulk Modulus (incompressibility) - B
2. Shear Modulus - G |

3. Young's Modulus - E
i

. Poisson's Ratio - v

The theoretical relationships existing between the

elastic constants and the seismic velocities are shown below:

it

[(Vr/vs - 2]/E(VP/VS )2"2]

2(1+v)V o

- 2 % yE
A A

W =«

?mf where: Vp= P-wave veloc?ty
Vs = S-wave veloclity
Q= density




The objective of the approach to be used is to
determine the overall variability of each of the dynamic
elastic moduli by accounting for the individual variabilities
of the P-wave.and S-wave velocities and the densities. Once
the variabilities of the elastic constants are determined, the
distribution or "probabilities of -occurrence” for the
constants will.ge estimated. This information can thén be
used in the prediction of the performance of given structures

if design limits are placed on the maximum and minimum

allowable elastic constant values used in design calculations.

Taylor's Series 1st Order Approximation Method

The method described here will be used to estimate
the variabilities of the elastic constants knowing the
variabilities of each of the variables in the elastic equations
on the last page. .

The Taylor's series approximation method enables the
mean and variance of the dependent variable y in the funection

y o= F(xl,xa,x ,...,xn) to be determined given the mean values

,l(l. and variance S‘-z of each of the independent random variables

X‘ ’x lx.s!ll!!x

2 N

Mean Value, ¥y

-y’: = F(ﬂl',ﬂa’ﬂsy'. [] lﬂN)

Vvariance, V v

1= 2 (45T (5Y)
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All derivatives are evaluated at their respective mean values,
For example, if:

- _ B %
Y = F(x, 0%, 0%5) = X, xix_s

oF 3 4
rrdie (Zx,)xax3
£ = 30:dsd

OF = 2 3
o x‘)i (Livxz)
Then:
]

¥y o= XX Ay

V[ﬂ = [(le )xi;?g}s:‘ e [x?‘(BX;)x‘;]S:z + [X?x:(ux;)] Siz

The rest of the statistical parameters for the dependent

variable y may then Be:determined:

Standard Deviation, Sy
¥

31 = \’V[§1

Coefficient of variation, Y;

'Vv - %L
'f:““

This procedure was used for the deterministic equations

involving the elastic constants and the P-wave and S-~wave
velocities and the densitlies. The resulting relationships are
shown in figure 11,

A computer program was wfitﬁen using these relationships
and input data of the P-wave and S-wave velogifies and the
soil densities, and their respective coefficients of variation.

The capability of the program is to caleculate the mean, variance,



2

Mean Value Relationships

V= [‘Vp/vs ? - é]/['z(vp/vs 7 - 2-.]
E = 2(1 + V)VEQ

B =QV - V2

G = Qud

Variance Relationships

v[v]

It

L /930 /(i i * - 2vp /g B+ 1)] (Swp) *ev
[v/227 0040 - 200 /i P+ ] s2 )
v[E] = [+ v)vd(b )+ ed]isd) + [u(i + v)@f*’*‘}(s2 )
v[E] = (g - % (sg )+ (8 Boig) (sg0) + (2@@)‘2( )

vic] = (Vs?) (Sg ) + (2@&5)z Sz)

I

Note: Use. mean values of all independent variables in the
above expressions,

Figure 11, Mean value and variance relationships for the
Dynamic Moduli,



standard deviation, and coefficient of variztion of the
dynamic elastic moduli given the input data and the

derived relationships, Using the computer program, a

study on the effects of changing input parameter variability

on the elastic constants was carrited out,

Study on the Effects of Increasing Variability on Elastic Constants
For the study of elastic constant variability due %o

input data variability, the following data sets were used:

1. Vp = 1000 meters/second Ve o
Vg = 200 meters/second Yp

= 5, 10,°15, 20 %
Yy, =5, 10, 15, 20 %

2. Vp = 1000 meters/second :ﬁi -
Vg = 400 meters/second Vp
Voo = 5, 10, 15, 20 %
Vyg = 5, 10, 15, 20 %
3. Vs = 1000 meters/second Vs
J —= 0,6
Vg = 600 meters/second Vp
W@ = 5, 10, 15, 20 %

W, =5, 10, 15, 20 %

i1

All data sets: Q = 200 kilograms/cubic meter

Ve = 5 %

It was assumed that the density of any layer, as determined
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by other testing procedures (ez., lab tests, logging procedures),
would not have a significant degree of variabllity within that
layer and, therefore, was kept constant with a small degree of
variation (“E.: 5%) so as to observe more closely the effects

of the seismic velocities on the elastic constants, If, however,
the density is suspected of being highly erratic within a given
deposit, its variability effect on the elastic constants could
be determined in a similar procedure,

Results of the variability study are shown in Table 1, with
the coefficients of variestion given for all of the dynamic moduli.
Figure 12 contains the listing of the computer program written
to analyze the input data with a typical output shown, A portion
of the totzal results ( fornl%% = 0,2) is included in the Appendix

for closer examination. In general, the conclusions that can

be drawn from the resulis are:

Young's Modulus, B

N o
1. The 15%' ratioc has a small effect on Ve. AS it increases, Vg
slightly increases also,
2. V., has almost no effect on V.,
Ve &
3. As ¥, increases or decreases by a certain magnitude, Vg roughly
%

does the szame,

Polisson's Ratio,v

1. The-¥§- ratio has a great effect on V,. As it increases, V,
P

also increases, but at a much greater rate.
Vg .
2. For a small*g; ratio (0.2):

a,) Changes in V, or V, have very little effect on v,.
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Figure 12,
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3. For a large%% ratio (0.6);
a,) Increasing E% or m%’by a certain magnitude also increases
Vy by the same magnitude (roughly).
Bulk Modulus, B

1. The ratio-\;% has an effect on V. As it is increased three-fold
the value of Va is increase two-fold,

2, V&shas a very small effect on VB' If it is increased, Va increases
only slightly.

3. As V;Pis increased by z certain magnitude, so too does Va
increase by the roughly the same magnitude.

Shear Modulus, G

1. The ratio ﬁg, has no effect on V.,
Ve @
2, VvPhas no effect on W&'
3. Increasing ﬁ% by a certain magnitude also increases VG by

roughly the same magnitude.

The results of the above study are important in that they
give a general guideline of how the dynamic soil moduli vary as
the compressional and shear wave velocities vary (as measured from
seismic methods previouly discussed), Heterogeneous soil profiles
can then be characterized not by using just the mean values, but
alsp_by taking into account the variations or poésibls distribution
‘qf,the actual in. situ values, In understanding the foundation
feéﬁansé to loads, under certain special types of circumstances,
i%'is necessary to be able to predict the likelihood that design

values used will be exceeded. This will give the engineer an idea
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of how well his/her structure will perform,

Given the mean value and'variability data for a specific
parameter, there are methods that are able to assign a probability
or "likelihood of occurrence® to all of the possible values of

the parameter,

Estimating Probabilities Using The Beta Distribution

The beta distribution is an empirical distribution which
has the ability to model random variable whose values must
always be positive quantities, and whose ranges are of a’
limited extent, The normal and uniform distributions are
special cases of the beta distribution and are,,therefore, more
limited in their applications. The versatility of the beta
distribution makes it applicable in many situations where the
normal and uniform distributions cannot be applied,

Because of the nature of the dynamic modulli and their
variability (as determined from the Taylor's approximation method)
the beta distribution is ideal for modeling their occurrence
distribution. The objective of this section 1is to show how
the probability of certain values of the dynamic moduli
occurring may be estimated, and how the results can be used
in predicting soil variability and,‘in general, structural
performance, For a more detailed explanation of the beta
distribution and its theoreticazl basis, refer to Harr(iQ??)t

Example Problem:

To illustrate the procedure to be used while trying to
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avoid a detailed explanation of the basis of the procedure,
an example will be run through to show how the desired results

are obtained.

Given: Mean value of Young's Modulus = E = 232.1 MPa
Coeff of variation of Young's Modulus = Ve = 20.6 %
Standard Deviation = SE_= T % Va = 47,85 MPa

Step 1: Compute the estimated maximum and minimum values
of E by assuming that all E values lie within three
standard deviation's of the mean value (in the normal
distribution, 99.7% of all values lie within three
standard deviations of the mean), |

E - 3Se = 232.1 - 3(47.85)

Therefore: EM\N

Emm = 88,55 MPa
Eppg = B + 3S¢ = 232.143(47.85)
Empy = 375.65 liPa
Step 2: Call E ., = a
Emg = P and compute the following guantities:
X=(E-2a)/(b-a)=(232.1 - 88.55)/(375.65 - 88,55)
X = 0.500 |
V= (se /( b-a))® = (47.85/(375.65-88.55))=
T = 0.0277778 |
Step 3: Determine & and Q@ parameters:
~z e Yy = 24, - -
A :_3%;0(1 - %) =~ (L.+7%) _37(4'{6?'-;&%)7‘3(1.' 0.5) - (1 4 0.5)

° =(‘.,,+ 1)_ (o + 2) ={3.00ﬂ) -(3.00 + 2,00)

~ 0.500

b8
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Q% = 3.00

Step 4: In figure 13 (taken from Harr(1977)) are given plots
that enable the value x#‘to be found such that:
4+
PIE = 3 ] = <}
X K %
* read " The probability that Z will be less than X is K% v,
The plots are entered with o+ 2, %-’r 2 values and the value

F 1is picked off the plot.

If x¢ =5 % is desired in our case, then:

o+ 2
%4-2
Xe=a+ F(b -a) = 88.55 + (0,22)(375.65 -~ 88.55)

5,00
5.00

non

and F = 0,22 from the XK= 5% plot,

Therefore, for this problem, there is a 5% chance that the
value of E in the field will be less than 151.7 MPa, The
values of E for any K# may be determined and the distribution
presented in the form of a cumulative distribution graph,

For this problem, this is done in figure 14, Wwith the use
of the computer, these results may be generated quite rapidly
and the distribution found for any dynamic moduli with its

given coefficient of variation,

Application of Probabilistic Results
The last section's method gave results of the following

form:
P [(dynamic modull) £ {(dynamic moduli} }= K %
BESILN

It can be seen that this information may be used in design and

FieLb
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o+ 2 K=017%
2001
Hevl
3
x
0 F .0
Percentage points for beta dist.” [0, |} 10
K=01%, 1%, 3%, 10%, 25%, 50%, 7577,
0%, 857, 997, 99,97 5
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-y =g+ Ftb-a)
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Figure 1 3 Plots of the percentage points K = 0.1, 1, 5, 10, 25, 50, 75. 90, 95, 99 and 99.9 percent
for beta distributions 0.1 for the interval [abl:ixy=a+Fih-u

(Harr,1977)
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analysis procedures in which the result directly relies on the
value of the dynamic moduli chosen Ffor the situation,

For example, suppose that the failure of a structure or
foundation occurs °~ if the in situ value of one of the dynamic
moduli is below a certain allowable value, with failure defined
as: the inability of the structure to perform its function;
an unfavorable soil response (high deformations and stress

levels) causing structural distress, Written in another manner:

Probability of Failure = Rg

p{ = P[(dynamic moduli)éx,Zj: K %

where xi is the allowable dynamic moduli used
in design,

Therefore, from the probabilistic methods previouly described,
variations in the in situ dynamié moduli calculated from
variations in the P-wave and S~wave Qelocities and profile
densities may be used to help establish design values to be used
that will give the probability of failure "level" desired for

specified projects.

Summary

1t has been shown that the results obtained from seismic
surveys using the refraction, uphole/downhole, and crosshole
methods can be used to quantify the variability of the subsurface
80il and rock parameters, specifically the in situ dynamic
elastic moduli. The magnitude or degree of variation of these
modull depend a great deal on the variability of the P-wave

and 3-wave velocity and density of sach layer, as well as the
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magnitude of the S-wave velocity/P-wave velocity ratio,
It is believed that as geophysical methods are used
more and more in engineering-to predict or estimate so0il and
rock properties and paramsters, the use of probabilistic
methods in describing and quantifying these parameter's
distributions will gain importance in design and analysis
procedures for predicting the performance of specific structures,
Although the geophysical methods used in field surveys are,
at this time, not as standardized and refined as the lab
testing procedures, they still have the advantage of being
able to characterize large volumes of material over an entire
site, Lab test results, no matter how carefully recorded on
even. the.finest of equipment, are only as good as the sample
tested is representative of the actual site conditions, The
potential for future development of the present geophysical
methods for engineering purposes is still a long ways off
from being fully realized, and the increasing use of computer
analysis in all areas of engineering adds to the viability of
the combination of these two areas for effecient and economical

site characterization,

Recommendations

The models developed to predict performance must, more than
ever, "encompass uncertainty so as to pinpoint the effects of

that uncertainty and ityimportance to total project performance

/1

in a quantatative manner. Qualitative engineering judgemerit




40—

should be aided by quantitative probability-assessment
methods.

Establishing the use of probabilistic quantitative
aspects in geotechnical exploration must be accompanied by
increasing efforts to systematically tabulate the variabilities
and distributions of geophysical, geclogical, and geotechnical
data gathered in tremendous guantities presently by many
groups: universities, governmental agencies, private business
groups. With this information, specific soil and rock types
and their natural variability will begin to be established,
and thus may be incorporated with increasing confi@pece into
engineering analysis. o

Geophysical methods must continue to be developed and
refined for use in the shallow depiths associated with most
engineering structures, Varification with borehole samples
and lab testing must continue to be done so that confidence
in the use of these methods may continue to grow,

The use of probabilistic concepts in geophysical
exploration for the prediction of site response to structural
loadings cannot be overlooked as a means of enhancing
engineering decision making, when its potential is on the
wéy to being fully realized, the present methods of communicating

degrees of uncertainty, of comparing risks, and of evaluating

experience will be enhanced tremendously.
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