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Introduction

Multicomponent solute transport problems involving precipitation and dissolution chemical
reactions are unique among the wide array of problems encountered in which homogeneous and
heterogeneous reactions affect the movement of contaminants in groundwater. The imposition
of solubility constraints for various reactive mineral solids may result in the formation or
disappearance of moving boundaries which mark the transient location of discontinuities in .
solid phase concentration, aqueous component flux, and other variables of interest such as
porosity. This distinct characteristic of precipitation/dissolution reaction problems poses
particnlar mathematical difficulties to their accurate sotution and requires special treatment.

The numerical approaches chosen to solve these types of problems are often suggested
directly from the chemical quantities employed as the primary dependent variables (PDVs).
While the selection of all species concentrations (Miller and Benson!) or the total dissolved
concentration of each component (Kirkner et al.?) as the PDVs are possible choices, their nse
results in front-tracking type (FT) schemes in which the moving boundary locations appear
explicitly as unknowns in the governing equations. However, choosing the total concentration
of each component as the PDV (Walsh et al.3, Cederburg et al.*) removes the explicit presence
of the moving boundaries, resulting in formulations that resemble enthalpy-type (ET) methods
used for heat flow problems with phase change (Crank®). This is an attractive feature which
greatly simplifies the numerical approach. However, general finite clement ET methods
exhibit oscillatory behavior as a result of their inability to accurately simulate the
discontinuities across the moving interfaces.

This work will develop and compare fixed-mesh finite element ET and FT formulations for
solving precipitation/dissolution chemical transport problems. As will be shown, these
schemes result from particular forms of the weak variational statement of the governing
differential equations. Throughout the work, it is assumed that all chemical interactions are
sufficiently fast that the local equilibrium assumption (LEA) is applicable.

Governing Equations

The following development describes the mass transport of N solute species A, involved in a
precipitation/dissolution reaction with the reactive solid phase C(s) described by

N
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. where v, represents the stoichiometric coefficient indicating the number of moles of the i th

species in one mole of the reactive solid. In'this presentation, other chemical reactions such as
agueous complexation and sorption are ignored to simplify the treatment, although they may
easily be inclnded. '

Mass transport equations for the solute species derived from conservation of mass are given

by 9 .
51(¢Ci)+V'Ji =9I, (i=1...N) (24)
and for the reactive solid mineral by
d
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where C, denotes the concentration of the i th species, J; is the mass flux of the i th species, ¢

is the porosity of the porous medium, d)s is the volume fraction occupied by C(s), V, is the

reactive solid molar volume, and I represents the reaction rate expressed in units of moles per
unit time per unit bulk volume of porous material. The reaction rate may be eliminated hy
substituting for I in equation (2a) from equation (2b) resulting in

%t{tb Ci+oV gl +V-J; =0, (i=1,...N) (3)

These mass transport equations must also satisfy the chemical solubility inequality constraint
posed by equation (1) expressed as
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where K denotes the equilibrium constant for the reaction and x the spacial coordinate vector.
Itis assumed in this development that unit activity coefficients for the solute species hold, and
that the activity of the solid phase is unity. To measure the degree of saturation with respect

to the reactive solid, the saturation index function (Lichtner et al.ﬁ) may be introduced as

N
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where £ is zero or negative if the aqueous solution is in equilibrium or undersaturated,
respectively, with respect to the reactive solid C(s).

If the reactive solid is present throughout the domain, equation (3) represents N partinl
differential equations and equation (4) one algebraic equation for the N+1 unknowns in the
system. However, since all regions of the system may not be saturated with respect to the
solid phase during a transport episode, a reaction zone will develop that does not contain the
reactive solid. This undersaturated zone will be separated from the saturated region by a sharp
reaction front across which the solid phase will appear (precipitate) or disappear (dissolve)
depending on the saturation index function in each zone.

Conservation of mass across this front relates the magnitude of the jump discontinuities in
the solute species flux and reactive solid volume fraction to the normal velocity v of the front

according to the generalized Rankine-Hugoniot equations given by (Lichtneret al.7)
v = —gsft  [Jl'n
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where v, denotes the magnitude of the front velocity normal to the surface of discontinuity s
with onit outer normal n, and the brackets [ ] represent the jump discontinuity in a quantity
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where v denotes the magnitude of the front velocity normal to the sorface of discontinuity s
with unit outer normal n, and the brackets [ ] represent the jump discontinuity in a quantity



across the surface s, eg.
0] = HGED - 560 M
‘The moving interface location now represents an additional unknown in the system that may
be solved for using equation (6). The choice of the primary dependent variables and the

manner in which the requirements of the Rankine-Hugoniot equation are incorporated into the
formulation defines the numerical approach to these problem types.

Finite Element Formulation

The transport problem in a single semi-infinite spacial domain will be considered. It is
assumed that the sclution is initially saturated with respect to the reactive solid phase, and that

the reactive solid occupies an initial volume fraction, ¢_. At ime t = 0, the concentrations
of all species A; in solution are lowered on the left boundary and subsequently held fixed at
C,(o,t} = C,°. This results in a dissolution front moving away from the boundary with its

location at time t designated as s(t). From equation (3), it is apparent that the following mass
fransport equations must be satisfied

2 al; .
SHOCH+ 5 =0, G=L..N), 0<x<s(9 84)

d s .
§(¢C;)+UV;"1 g:: ax =0, (i=1,..,N), s()<x <o (8b)

The development of a finite element solution requires a weak variational statement of this
problem obtained by multiplying eqnations (8a) and (8b) and the interface boundary condition
implied by equation (6) by an arbitrary test function v resulting in
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Integrating the flux term by parts, equation (9) becomes
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Using generalized function notation, equation (10) may equivalently be written as (Mundell
and Kirkner®)
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where 6(x) denates the Heaviside step function. The ET formulation arises from the selection
of the total component concentration as the PDV. In equation (11), the expression in the
square brackets is recognized as the total concentration of the i th species, Cy;, or

Cri = G+ 0r(x~s(t)), (i=1,..,N) (12

where K = (¢, V s“)/@ denotes the solid phase concentration of C(s) per unit volume of aqueous



solution. Thus, equation (11) is the weak variational statement corresponding to the local
form of the conservation of mass for the total concentration of solute species A;. Note that the
introduction of Cy; into equation (11) as the PDV removes the explicit presence of s(f) in the
variational statement. Employing linear basis functions for Cy;, C,, and v leads to the semi-

discrele approximation
Meri +K¢; = foi, (i=1,....N) (13)

where M and K denote standard mass and coefficient matrices, respectively, for the mass flux
conditions specified, and Cr and c; are the vector of nodal values of CTi(x,t) and Ci(x,t), andf oi

is the vector containing the boundary condition contribution for the i th solute species.
Equation (11) may be fully discretized using the generalized trapezoidal scheme and solved

using Newton methods, function iteration, or modifications to these (Mundell and Kirkner?).
If equation (10) is rewritten as
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it is apparent that the unknown value of the interface is explicitly contained in the weak
variational statement. Use of all species concentrations as the PDVs suggested by equation
{14} leads directly to finite element front-tracking schemes in which s(t} becomes part of the
solution. This is also true for the case of the use of the total aqueous concentration when
soluble complexation reactions are involved in mass transport.

For the case of dissolution without precipitation, the finite element discretization of equation

(14) has been shown® to yield the following set of nonlinear ordinary differential equations
. d .
MG +Ke = £+ 9V, 05 5 W), (i=1,...N) (15)

where wi(s) is the vector of global linear shape functions evaluated at 5. Time discretization
using the generalized trapezoidal rule results in the same set of fully discretized equations as for
transport without chemical reaction except for the addition of a vector that must be updated by

a search algorithm for st.
Sample Problem

The one-component diffusion dissolution problem demonstrates the behavior of the ET
formulation in comparison to an FT scheme. The problem, originally posed by Lichtner et

al%, involves a system containing a single aqueous component A in local equilibrium with a
reactive solid mineral phase C(s). This requires that the initial concentration of species A
everywhere in the domain be constant and equal to the equilibrium constant, K. The reactive

solid phase occupies some initial volume fraction ¢_ which is very small in comparison to

the system porosity, ¢. At time t = 0, the concentration of A on the left boundary is reduced
and subsequently held fixed at C,(0,t) = C,° such that the aqueous solution is undersaturated
with respect to C{(s) and a moving dissolution boundary begins to propagate through the

domain,
The problem is completely analogous to the one-phase heat conduction problem with phase

change’ and reduces to solving for the concentration profile in the domain to the left of the
moving front. Nondimensionalization of the mass transport equation to the left of the



interface results in the parabolic diffusion equation with the leading constant of unity

3 % - an
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where ¢ = (C, - C,O/(K - C,°), x=x/L, s=s/L, (=D/L?, and D denotes the diffusion coefficient.
The interface condition becomes

de(e,n _ 5 ds an
ox dt

where the parameter A = x (K - C_°) is the dimensionless solid phase concentration and 1/A is

the so-called Stefan number. It is obvious that A uniquely controls the velocity of the moving
dissolution boundary, and therefore defines the general behavior of the problem.

Figure 1 illustrates the beh“avior of the concentration solutions for fully implicit ET and FT
schemes with Ax = 0.025, Af = 0.0167, and A = 100 at the fixed spacial coordinate x = 0.075.
The greater oscillatory behavior of the ET solution is apparent in comparison to the FT
solution, and results from the inability of the ET scheme to accurately describe the
discontinuous rature of the total component concentration across the dissolution interface.
The L, error norm (which measures the root-mean-square of the error over the domain) for the

ET method solution of Figure 1 is plotted versus the nondimensional interface location in
Figure 2. The magnitude of the L, error norm varies considerably as the dissolution front

travels throngh the domain, reaching maximum values when the front moves through the
center of an element, and minimum values as it passes through a nodal location.
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Figure 1. One-component diffusion dissolution (& = 100). Figure 2, L7 error norm for the ET scheme in Figure 1.

To determine the effect that the size of the solid discontinuity at the interface has on the
magnitude of the error in the concentration solution, the value of A was varied over a wide
range and simulations were performed. The results for fully implicit ET and FT schemes
using & fixed domain discretization of Ax = 0.025 are summarized in Figure 3. The mean L,
error norms between s = 0.0 and 0.2 were calculated from graphs similar to Figure 2. The
results show the superior performance of the FT scheme for values of A greater than about 10,
However, for problems with lower solid concentrations in comparison to solute




concentrations, the ET formulation yielded more accurate concentration distributions using less
computational effort than the FT method.
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Figure 3. Effectof A on mean L3 exvor norm between sfL = 0.0 and 0.2,

Conclusions

Two fixed-mesh finite element approaches have been presented for sobving solute transport
problems involving precipitation/dissolution reactions. The results of simulations for one-
component diffusion dissolution indicate that despite oscillations inherent in the aqueous
concentration profile produced by enthalpy-type (ET) formulations, greater accuracy may be
achieved with less computational effort and numerical complexicity than with front-tracking
type (FT) schemes for large classes of transport episodes in which the reactive solid
concentration does not significantly exceed the aqueous concentration of the solute species.
The retention of the simplicity of ET methods is a desirable element in the development of a
general multicomponent code for modeling more complex problems involving multiple
precipitation/dissolution fronts with aqueous complexation and sorption,
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